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Understanding the impact of recurrent interactions on population tuning
Application to MT cells characterization
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Context & Summary

A lot of theoretical work has been done in understanding neural computation
and dynamics regulated by excitatory and inhibitory interactions [5, 4] but:
•Most studies are conducted without structured input.
• Their impact in terms of sensory information processing is often missing.

The goal of this work is to bridge this gap by focusing on the impact of lateral
interactions on population tuning.
I Methodology
• A ring network model under neural fields formalism with a structured input.
• Bifurcation analysis to understand model’s behavior depending on connec-

tivity and input parameters.
I Application to MT cells characterization
Neurons in the middle temporal (MT) visual area have been linked to 2D
motion perception [3, 1]. Direction-selective cells encode either (local) com-
ponent or (global) pattern motion. However, these properties depend on the
spatiotemporal inputs (e.g. plaids vs. Random Dot Patterns (RDPs)) as well
as on the recurrent local interactions. We aim to better understand how the
local interactions in conjunction with driving stimuli lead to different tuning
behaviors.

Model description

I Ring model with Excitatory/Inhibitory interactions
u(θ, t) (θ ∈ [−π, π)) denotes a population of directionally tuned MT neurons
with dynamics governed by:

du(θ, t)

dt
= −u(θ, t) +

∫ π

−π
J(θ − φ)S(µu(φ, t))dφ + Iext(θ),

where, J is the connectivity kernel, S is a sigmoid function (µ regulates the
sigmoidal gain), Iext is the driving input.

I Definition of Iext
Iext is defined as a linear combination of gaussian bumps. It allows us to
represent different kinds of stimuli used to probe motion estimation.
• Peak width (PW) : Representative of

uncertainity in local velocity estimates
(standard dev. of the bump)
• Peak separation (PS) : Directional dif-

ference between component motions.

I Definition of Jge,σe,gi,σi(θ)
Let Jge,σe,gi,σi(θ) denote weighted difference of gaussians:

Jge,σe,gi,σi(θ) = geG(θ, σe)− giG(θ, σi),
where, G(θ, σ): Gaussian function, ge: excitatory strength, σe: extent of
excitatory surround, gi: inhibitory strength, σi: extent of inhibitory surround.

Numerical study of the model

I Exploration of the connectivity space with J̃α,β
J̃α,β(θ) = Jgeα,σeα,giα+β,σi(θ)

• Assumption: We consider the case of a uniform lateral inhibition, so σi is
fixed to a large value (σi = 10π).
• α is a parameter to smoothly vary the extent of excitatory surround from

narrow to broad while mainting constraints imposed on specific Fourier
components.
• β is a free parameter to regulate the strength of lateral inhibition.

Numerical study of the model (Cont.)

I Connectivity kernels: Jα,β
•On the left, connectivity kernels with narrow to broad excitatory extent.
•On the right, connectivity kernels with low to high lateral inhibition

strength.

I Solution space
• Stable and unstable solutions the network could converge to under the

presence of driving input.
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I Likelihood of convergence
We estimate the strength of the stable solutions using random noise
as initial condition w.r.t. input and kernel parameters (100 trials)

• There are parameter regimes where multiple solutions co-exist.
• The stability of the solution also changes quite sharply w.r.t to parameters

of the driving input.
• All theoretically stable solutions are not reached unless there is a bias in

the initial conditions.

Conclusion
Our model demonstrates that recurrent interactions can shape direction tun-
ing of MT neurons. The properties of both excitation width and inhibition
strength explain the different tuning classes and their dynamics with respect
to spatiotemporal properties of the input. Moreover, prototypical tuning
shapes (e.g. VA, SB and TP) correspond to different regimes of a single
dynamical system, where sharp transitions can be identified.
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Understanding tuning behavior of MT cells

I Experimental Observation
MT cells show different tuning behaviors [6] when stimulated with two over-
lapped motion components such as RDPs or Plaids.

Vector average (VA) Side biased (SB) Side biased(II) Two peaked (TP)

I Question 1
• Could recurrent local interactions in the feature space (direction of motion)

lead to these observed tuning behaviors?
In terms of modelling, can a single model reproduce these behaviours by con-
sidering local recurrent interactions in the feature space?

I Model behavior: Population versus Single unit tuning
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•Observation: Recurrently interacting homogeneous population of Direction
Selective (DS) cells can reproduce different kinds of tuning observed exper-
imentally.
• Fluctuations can occur at single cell level due to the multistability.
I Input driven changes in tuning

•Model behavior changes from VA to SB or consistent SB to fluctuating
component selection. These behavior changes are driven by changes in
component separation and relative strength.
• Assymetries in the input could significantly stabilize MT single unit tuning

from a fluctuating WTA to SB.

Predicting tuning behavior

I Experimental Observation
Pattern vs. component tuning classification has been tradition-
ally obtained with plaid patterns [3] but several empirical studies
have shown that such classfication cannot translate from one stimu-
lus class to another [2, 6], for example from plaid stimuli to RDPs.

Pattern CellsComponent Cells

I Question 2
Can our model capture the changes in the tuning behavior with respect to
changes in the input and therefore explain the difficulty in predicting the
tuning behavior across stimuli type?
I Model behavior: Connectivities w.r.t to Input stimuli

• Extent of overlap between likelihood of
different tunings vary across stimuli and
certain transitions have a very weak like-
lihood.

Temporal dynamics

I Experimental Observation
Temporal dynamics of MT cells show tuning transitions [6] and develop their
selectivity gradually.
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I Question 3
Can this be explained by temporal dynamics of inhibition?
I Model behavior: slow onset of inhibition
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• Slow onset of inhibition could lead to a lack of tuning behavior in the initial
time period, lateral competition then leads to observed tuning behaviors.
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